Жив или мёртв — Проверяем радиодетали


В теме представлены простейшие способы проверки радиодеталей, не требующи особых знаний и навыков.

Все представленные материалы взяты из открытых источников в сети, и предназначены для ознакомления.

Если цитируемый материал принадлежит вам, напишите сообщение в теме, и ваши авторские права на соотвествующую разработку будут указаны.


Ну и, как обычно, все действия на остовании данной темы вы осуществляете добровольно и под свою отвественность, соблюдая все правила безопасности.

Как проверить диод

Начиная проверку диода на работоспособность, необходимо понимать, что визуально неисправный диод иногда фактически невозможно отличить от рабочего.

Также, перед проверкой необходимо знать, что основные неисправности диодов бывают трех видов:
— пробой диода (наиболее распространенный дефект). В результате такого дефекта диод проводит ток в любом направлении, фактически не имея собственного сопротивления:
— обрыв диода (на практике встречается реже). В данном случае такой диод перестает полностью проводить ток, независимо от направления течения тока.
— утечка. В этом случае диод проводит незначительный обратный ток.

При любой проверки диодов лучше всего их выпаивать с основной схемы полностью.

Как проверить диод мультиметром?

Подопытный диод 1n5844 – это 5А диод Шоттки..
Любой диод имеет два вывода: катод и анод. Катод помечен серебристой полоской.

Для того, чтобы ток протекал через диод, на анод должно поступать положительное напряжение, а к катоду отрицательное. Включив необходимый режим измерений на мультиметре, можно приступать к проверке диода.
Необходимо помнить, рабочий диод проводит ток лишь в одном направлении.

Подключив щупы, к аноду (красный +), а к катоду (черный —), мы видим значения на дисплее — это пороговое напряжение диода. Из этого можно сделать вывод, p-n переход открыт.

Подключив щупы, к катоду (красный -), а к аноду (черный +), значений на дисплее нет, кроме 1.

На этом процедура проверки диода закончена – диод исправен.

Если независимо от полярности подключения диода прибор показывает значение 0 или 001, (и иногда слышим характерный звуковой сигнал), это свидетельствует о том, что диод пробит. Такой диод проводит ток в любом направлении.

Если независимо от полярности подключения диода прибор показывает значение 1, такой диод имеет обрыв. Он вообще не проводит ток.

Как проверить диод, в случае когда, под рукой нет мультиметра с функцией проверки диода? Можно использовать для этой цели обычный омметр. Установив значение предела измерений до 20кОм, проверку диода таким тестером производят по схеме, описанной выше.

Иногда можно столкнутся со сдвоенными диодами. Такие диоды имеют три вывода, в одном корпусе заключены сразу два диода. Они имеют общий анод или катод. Проверка такой сдвоенной сборки абсолютно ничем не отличается от проверки обычного диода, только проверять нужно каждый диод в сборке.

Вложения:

Как проверить диодный мост

В случае, если мост состоит из отдельных диодов, необходимо поочередно их выпаивать и проверять. Принцип проверки детально читаем в сообщении о том, как проверить диод.

Подопытная сборка — GBU408, 4A 800V. В данном корпусе заключены четыре диода связанным между собой должным образом. Если хоть один из диодов окажется неработоспособным, придется заменить весь мост целиком.

Для удобства проверки диодов изображена схема, по которой соединены диоды в данном корпусе. Она поможет протестировать каждый диод и не запутаться с выводами.

В данном случае все диоды работают исправно, такой диодный мост рабочий.

Как проверить диодный мост без мультиметра?

Есть еще несколько способов, как проверить диодный мост если нет под рукой мультиметра. Например, стоит подать постоянное напряжение на вход диодного моста и измерить его потом на выходе. Поменяв после этого полярность напряжения, на входе смотреть на показатели вольтметра. Если показатели напряжения не изменяются в зависимости от полярности, в принципе можно сказать, что мост выполняет свою функцию.

Вложения:

Как проверить диод Шоттки

Диоды Шоттки благодаря своему быстродействию зачастую используются в импульсных стабилизаторах, а также в выпрямителях блоках питания ПК. Проверка на исправность диода Шоттки ничем особо не отличается от проверки самого обычного диода, она проводиться по единому принципу. Единственным моментом будет, который нужно учесть, что диоды Шоттки, используемые в хороших и качественных блоках питания зачастую встречаются сдвоенными в общий корпус и имеют общий катод.

Проведем небольшую проверку диода Шоттки SBL3045PT. Это диод от блока питания ПК, рассчитан производителем до 45 В, 30 А. (т.е. по 15 А на каждый диод).

При использовании сдвоенных подобных диодов в выпрямителях необходимо учитывать тот момент, что производитель часто указывает ток на сборку целиком, а не на каждый диод в сборке.

Схематическая проверка сдвоенного диода Шоттки с общим катодом изображена ниже. Мы видим, что поочередно необходимо проверить каждый из двух диодов.

Важно! При проверке диода можно и важно найти дефекты не только обрыв или пробой. Необходимо пытаться учитывать такой неприятный дефект, как небольшая «утечка».

Если мы производили проверку мультиметром с режимом «диод», и выявили вполне рабочий элемент, но у нас есть подозрение подобную на утечку, тогда необходимо попробовать измерять обратное сопротивление диода, предварительно включив на мультиметре режим омметра. На диапазоне «20 кОм» мультиметр должен показывать обратное сопротивление диода как бесконечно большое. Но если тестер показывает даже небольшое сопротивление, например, около 2—3 кОм, тогда к такому диоду необходимо относиться с большим подозрением и лучше сразу заменить новым.

Одним из самых больших недостатков у диодов Шоттки является то, что они моментально выходят из строя при превышении допустимого напряжения. Учитывая все моменты при самостоятельном ремонте импульсных блоков питания, в случае обнаружения дефектных диодов и после их замены, сразу же необходимо проверять на исправность все силовые транзисторы.

Вложения:

Как проверить варикап

Варикап – полупроводниковый прибор, который изменяет свою емкость в зависимости от обратного напряжения. В двух словах, варикап — это диод, имеющий непостоянную емкость в p-n-переходе. Эти радиокомпоненты нашли свое применения в различных радиоустройствах с электрическим управлением подстройкой частоты контуров, таких, как: передатчики, приемники и различные блоки телевизионной радиоаппаратуры.

Простая проверка варикапа ничем не отличается от проверки диода или стабилитрона. Для этого необходим мультиметр с режимом проверки диодов или простой омметр. Включив мультиметр в режим проверки диодов, варикап проверяют в прямом режиме и в обратном.

Как видно на фото, в одном из вариантов подключения варикап открывается, а в другом – нет.

Простая проверка варикапа на этом окончена, если под рукой есть мультиметр с возможностью измерения емкости в несколько пикофарад, тогда можно продолжать и проверять емкость варикапа. Учитывая, что варикапы обладают очень небольшой переменной емкостью, необходимо производить проверку, не касаясь руками контактов варикапа.

Емкость варикапа величина не постоянная, и сильно зависит от подаваемого напряжения. Зачастую емкость варикапов колеблется от единиц до десятков пикофарад. Убедившись в наличии емкости варикапа и измерив ее величину, на этом этапе проверку варикапа мультиметром можно считать законченной.

Также, часто встречаются различные схемы приставок к мультиметру, для измерения емкости варикапов. Их необходимо использовать, если измерения емкости мультиметра не отличаются хорошей точностью.

Вложения:

Как проверить варистор

Любой ремонт техники связан с проверкой различных радиодеталей. Сегодня в статье мы расскажем о том, как проверить варистор, а также о его назначении в схеме.

Варистор представляет собой резистор, который способен резко изменить свое сопротивление в зависимости от напряжения. Имея нелинейную характеристику, варистор очень быстро изменяет свое сопротивление от сотен МОм до десятков Ом. Такое свойство применяется для поглощения коротких всплесков напряжения, а при более длительных всплесках варистор уже взрывается с громким хлопком и кучей дыма. Включение варистора производиться после предохранителя параллельно напряжению сети. При коротком скачке – варистор поглощает энергию импульса, а при длительном – сопротивление варистора станет настолько малым, что сработает предохранитель.

Первым делом производится осмотр варистора на плате, ищем наличие на нем сколов и трещин, почернения, следов нагара. При выявлении внешних дефектов варистор необходимо заменить, можно на некоторое время его выпаять из основной платы, схема будет работать и без него. Но в таком случае необходимо помнить, что при всплеске напряжения будут выходить из строя уже другие компоненты схемы и это повлечет за собой более дорогой ремонт.

Если внешний осмотр дефектов не выявил, в таком случае необходима проверка варистора мультиметром.

Как проверить варистор k275 мультиметром.

Тестер переключаем в режим измерения максимального сопротивления. В нашем случае сопротивление варистора значительно больше, чем диапазон измерения мультиметра. На этом проверка варистора тестером окончена.

Вложения:

Как проверить динистор

Динистор используется в схемах лампочек экономок, симисторных регуляторов мощности, диммеров и пр.

Необходимо отметить, что динистор выходит из строя крайне редко, а для его проверки необходимо немного повозится.

Работа динистора основана на пробое. В исходном положении динистор не способен проводить через себя ток, пока на его выводы не подадут напряжение пробоя. После этого происходит лавинный пробой динистора и он начинает через себя пропускать ток, достаточный для управления симистором или тиристором.

С помощью мультиметра динистор можно проверить только на пробой, если динистор в обрыве, проверка динистора мультиметром результатов не даст.

Для реальной проверки на работоспособность нужно собрать схему проверки динисторов.

Она включает в себя совсем немного компонентов:
блок питания с возможностью регулировки напряжения в пределах 30-40 В.
резистор 10 кОм.
светодиод.
Подопытный образец — симметричный динистор DB3.

Если нет в наличич блоки питания с диапазоном регулировки до 40 В, для этих целей можно соединить последовательно два или даже три регулируемых блока питания.

Проверка динистора DB3 начинается со сборки схемы. Устанавливаем выходное напряжение порядка 30 В и постепенно подымаем его немного выше, до момента загорания светодиода. Если светодиод загорелся – динистор уже открыт. При уменьшении напряжения светодиод потухнет – динистор закрыт.

Как видим, светодиод начинает тускло загораться при подаче на схему напряжения 35,4 В.

С учетом, что 2,4 В уходит на светодиод, напряжение пробоя у подопытного динистора DB3 составляет порядка 33 В. Из паспортных данных значение напряжение пробоя динистора DB3 может колебаться в пределах от 28 до 36 В.

Если необходимо проверить несимметричный динистор, следует соблюдать полярность его включения в этой схеме.

Вложения:

Как проверить LM317

Тестер для стабилизатора LM317

На вход схемы (Input) подается напряжение с любого источника питания напряжением 3-40 В. На вход тестера может подаваться как переменная, так и постоянное напряжение, поскольку на входе стоят диоды, выпрямляющие переменное напряжение. Резистором R2 регулируют напряжение на выходе тестера, при этом измеряя ее вольтметром или мультиметром в соответствующем режиме. При нормальной работе LM317 измеренное напряжение на выходе тестеру должна равняться напряжению, вычисленной по формуле (см. рисунок LM317_02.jpg).

В большинстве случаев для оценки работы микросхемы достаточно увидеть изменение напряжения на выходе примерно от 1,5 В до 0,85 * Vin.

Диоды VD1, VD2 и VD3, VD4 включены попарно-параллельно для увеличения максимального прямого тока через них с 50 мА до 100 мА. Вся схема была смонтирована «воздушным» способом в пластиковой баночке от фотопленки. На крышку банки выведен резистор R2, а на дне закреплен разъем типа DIN-5, три гнезда которого служат для подключения микросхемы проверяемого, а два — для подключения мультиметра.

Для подачи входного напряжения через отверстие были выведены два проводника с «крокодилами».

ВНИМАНИЕ! Входное напряжение не должно превышать 40 В!

Вложения:

Как проверить TL431

Микросхема TL431 – это управляемый стабилитрон. Она часто встречается в блоках питания ПК и т.д. Если она вышла из строя, то это может повлечь за собой массу неприятностей, таких как глюки в работе материнской платы и подобные этому явления. Если есть подозрения на неисправность данного компонента, то лучше заменить его сразу. Но если нет под рукой ничего под замену, а проверка на работоспособность необходима, как проверить TL431 в таком случае? Для этой процедуры, надеюсь, вам будет полезна наша статья.

Многие, кто первый раз столкнулись с микросхемой TL431, часто называют ее транзистор TL431 и пытаются ее проверять мультиметром. Толку от этой проверки будет ноль, т.к. сопротивление между выводами в разных случаях разное и отличается от детали к детали. Для правильной проверки микросхемы TL431 необходимо ее подключить в очень простенькую схему.

Резистор R3 подбирается таким образом, что бы ток, проходящий через светодиод, не превышал 20мА. Сопротивления R2 и R3 — это балансировочные резисторы, от них будет зависеть, при каком напряжении источника питания загорится светодиод. TL431 откроется лишь тогда, когда напряжение на ее управляющем выводе достигнет 2,5В.

Включенная в такую схему TL431 является отличным индикатором повышения напряжения. Поскольку напряжение источника будет фиксированное — 5В, то управление микросхемой будет производиться с помощью подстроечного резистора R2.

Для наглядного теста, эта схемка реализована на макетной плате, но ее можно смело смонтировать в маленький корпус и получить полезный девайс, если есть необходимость в частой проверки данной микросхемы. В исходном состоянии светодиод не горит, TL431 — закрыта.

Дальше стоит изменять сопротивление подстроечного резистора до тех пор, пока микросхема не откроется. Светодиод загорается сразу ярко, нет переходного момента или тусклого свечения.

Эту схему также можно смело использовать как индикатор заряда батареи или другого сигнализатора повышения напряжения. На этом этапе проверка TL431 окончена, микросхема функционирует правильно, и можно сказать, что она полностью рабочая.

Более подробно о проверке TL431 можно почитать в статье на сайте Радиоскот.
https://radioskot.ru/publ/izmeriteli/proverka_istochnika_opornogo_naprjazhenija_tl431/15-1-0-1194

Вложения:

Как проверить операционный усилитель

Операционные усилители очень широко применяются в современных схемотехнических решениях. ОУ используются в качестве усилителей, компараторов, повторителей, сумматоров и т.п. Широко распространенные ОУ 741, TL071, CA3130, CA3140 и их отечественные аналоги (544УД2, КР1409УД1 и др.) имеют корпус 8DIP с одинаковым расположением выводов.

Распиновка операционного усилителя 741 в корпусе DIP8.

Пин 1, 5 — Баланс.
Пин 2 — Инвертирующий вход.
Пин 3 — Неинвертирующий вход.
Пин 4 — Минус питания.
Пин 6 — Выход.
Пин 7 — Плюс питания.
Пин 8 — Не используется.

Представленная ниже схема тестера операционных усилителей отличается простотой изготовления и поможет быстро проверить работоспособность ОУ.

Испытуемый ОУ вставляется в 8-выводной сокет для DIP-корпусов. Второй вывод ОУ (инвертирующий вход) подключается к делителю напряжения R2, R3 и т.о. на входе получается половина напряжения питания, т.е. 4.5 Вольта. Третий вывод ОУ (неинвертирующий вход) подключается к плюсу питания через резистор R1 и кнопку. Шестой вывод ОУ (выход) подключается через токоограничительный резистор R4 к светодиоду LED, который индицирует исправность ОУ.

Операционный усилитель здесь включен по схема компаратора напряжения. Вставьте испытуемый ОУ в сокет, при этом соблюдайте ключ (точечка или выемка возле первого вывода). В режиме компаратора, на выходе операционного усилителя появиться положительный потенциал, при условии, что на входе 3 напряжение будет больше, чем на 2-ом входе ОУ. При исправном ОУ, на 2-ом выводе ОУ будет напряжение 4.5 Вольта, а на 3-ем выводе ОУ будет 0 Вольт. Т.о. на выходе операционного усилителя будет 0 Вольт и светодиод гореть не будет. Как только нажимается кнопка S1, напряжение на 3-ем выводе ОУ (неинвертирующий вход) будет выше, чем на 2-ом, следовательно на выходе появиться напряжение, от которого загорится светодиод LED. Это будет означать, что операционный усилитель работает правильно.

Список радиоэлементов

C1 — Электролитический конденсатор 10мкФ 25В.
R1-R3 — Резистор 10 кОм.
R4 — Резистор 1 кОм.
LED — Светодиод.
S1 — Кнопка.
Батарея — 9 В.

Также о проверке операционного усилителя можно почитать в статье на сайте Радиоскот.
https://radioskot.ru/blog/tester_ispravnosti_ou/2012-10-30-10

Вложения:

Как проверить таймер 555

USB тестер для таймера 555

Схема реализации — см. 555_01_schema.jpg . Питание — 5V.

Работа схемы напоминает работу мультивибратора. Если светодиоды мигают поочередно, то микросхема исправна. Если горит постоянно или мигает один светодиод — микросхема неисправна.

Список радиодеталей.

DA1 — NE555.
— R1,R2 — 390 кОм.
— R3, R4 — 300 Ом.
— С1 — 1 мкФх16В.
— С2 — 0,01 мкФ.

Еще о проверке микросхем таймеров 555 можно почитать на сайте Радиоскот.
https://radioskot.ru/forum/12-1851-1

Вложения:

Как проверить LCD дисплей

Тестер предназначен для быстрой проверки LCD-дисплеев Winstar WH1602D или если необходимо подключить этот дисплей к компьютеру для каких-то иных целей. Питание от USB-порта компьютера. LCD-дисплей подключается к плате тестера с помощью разъемов типа PLS, которые предварительно необходимо впаять в плату дисплея с обратной стороны.

Тестер состоит из печатной платы, на которой размещены разъемы для подключения дисплея, USB-разъем и разъем DB-25M для подключения к LPT порту. Также на плате установлена кнопка, позволяющая включить подсветку дисплея, а на обратной стороне платы подстроечный резистор для точной установки контрастности.

Тестер выполнен на печатной плате из одностороннего стеклотекстолита, размером 45х88 мм.

Вложения:

Как проверить конденсатор

Конденсатор — важный элемент электрической цепи при неисправности может спровоцировать отказ всей схемы или заставить глючить один из ее узлов.

Интересное на схемафоруме:
Тестер литиевых и железофосфатных АКБ

В процессе проверки конденсатора желательно выпаять и визуально осмотреть радиокомпонент на наличия видимых дефектов:
— вздутия, трещины;
— почернения, следы гари;
— вытекшего электролита.

Конденсатор, который нормально выглядит, еще не является залогом того, что он полностью исправен.

Для более точной диагностики необходим мультиметр, желательно с возможностью проверки емкости конденсаторов. В таком устройстве необходимо всего лишь выбрать диапазон измерения необходимой емкости и подключить конденсатор в специальное гнездо (если оно имеется) или к щупам прибора.
Как проверить конденсатор

На практике если показания мультиметра отличаются от номинала конденсатора +/-15%, можно считать такой конденсатор исправным. Подопытный наш образец имеет: 5,6 мкФ, показания прибора составляют: 5,8мкФ. Вердикт — конденсатор рабочий.

Как проверить электролитический конденсатор мультиметром?

Если функция измерения емкости не предусмотрена на вашем приборе, тогда простейшая проверка конденсатора мультиметром поможет выявить в нем замыкание, но потерю емкости измерить не получится. Для такой проверки необходимо мультиметр включить в режим измерения сопротивления и смотреть на показания индикатора. В первоначальный момент конденсатор накапливает заряд, и его сопротивление уменьшается, спустя определенное время сопротивление конденсатора начнет сильно увеличиваться.

По скорости изменения сопротивления субъективно можно судить о реальной емкости конденсатора.

Как проверить исправность конденсатора тестером?

Вышеописанные действия с легкостью можно повторять не только цифровым, но и стрелочным прибором, в котором отклонение стрелки будет визуально даже лучше видно. Диапазон измерений прибора лучше выставить в пределах 2МОм. Но данный метод проверки способен выявить работоспособный конденсатор лишь емкостью не менее 1мкФ.

Как проверить конденсатор на плате?

Все предыдущие действия можно проводить на плате. Проверить конденсатор мультиметром не выпаивая таким способом не составит труда. Но надо знать, что другие радиокомпоненты будут влиять на показания прибора. Влияние будет зависеть уже от конкретной схемы прибора.

Перед тем, как проверить исправность конденсатора необходимо помнить:
— проверять только разряженные конденсаторы (замкнув на несколько секунд их выводы). Не соблюдая данную меру предосторожности есть шанс, что мультиметр выйдет из строя;
— не браться за металлические выводы щупов руками. Проводимость человеческого тела непосредственно влияет на показания прибора;
лучше всего проверять любой конденсатор, который выпаян из основной схемы.

Вложения:

Как проверить светодиод

На практике частенько возникает необходимость в проверке исправности светодиодов или определения их полярности. Иногда под рукой находиться лишь тестер, и тогда возникает такой вопрос, а как же можно проверить светодиод тестером? Существует несколько способов проверки светодиодов, два самых популярных и интересных способа, о том, как проверить светодиод мультиметром, мы вам расскажем и покажем далее.

Как проверить светодиод мультиметром?

Самый первый, наверное, и самый популярный метод проверки. Мультиметр переключается в режим проверки диодов (иногда просто в режим омметра). Красный щуп касается положительного контакта светодиода, а черный — отрицательного. У новых светодиодов, та ножка, что чуть длиннее — это (+). В этом случае, светодиод загорится тусклым светом, далеко не в полную яркость.

Необходимо помнить, что не все мультиметры способны таким образом зажечь светодиод, и проверить исправность светодиода иногда бывает трудно. Если светодиод не загорается в таком подключении и звониться как обычный диод, то такой светодиод лучше всего проверять от источника питания 3 В.

Для быстрой и точной проверки светодиодов очень удобным оказался способ проверки светодиода от гнезда проверки транзисторов.
Как проверить светодиод мультиметром

В этом случае светодиод загорается в полную яркость. Таким способом очень удобно проверять новые светодиоды, у которых длинные контакты.

Вложения:

Как проверить оптрон

Состоит оптрон из двух основных частей (фотоизлучателя и фотоприемника) заключенных в общий корпус. Это устройство применяется для гальванической развязки блоков, между которыми существует большая разница потенциалов и т.п.

Как проверить оптрон мультиметром?

Взять и просто проверить оптрон мультиметром не получиться. Для самой простой проверки оптрона необходимо подать напряжение на его вход (согласно схеме), а выход уже проверять мультиметром в режиме проверки диода.
Для более удобной проверки оптрона можно использовать более интересную схему. Включает она в себя с минимум компонентов, а сборка ее занимает не более получаса.
Как проверить оптрон

Питание оптрона производиться через светодиод, который загорится, если исправный фотоизлучатель. Второй светодиод загорится, если исправный фотоприемник, через который течет ток к светодиоду.

Для наглядности второй вариант схемы был собран из элементов, которые были под руками. Роль подопытного играет оптопара PC817.

Роль гнезда для подключения оптрона выполняют остатки COM кабеля. Но лучше для таких целей использовать гнезда под микросхемы, тогда подключения оптрона станет более удобным.

Питание схемы осуществляется с помощью старого USB шнура. В общем, схема работает исправно сразу, и не требует дополнительной наладки. Если горят оба светодиода, тогда оптрон можно считать рабочим.
Как проверить оптрон

У многих возникнет вопрос, а если пробит выход оптрона, тогда же тоже будут светиться оба светодиода! В таком случае яркость второго светодиода будет значительно выше, это визуально очень хорошо будет видно.

Вложения:

Как проверить симистор

Симмистор часто встречается в схемах регулировки тока. Фактически в любом бытовом устройстве, будь то пылесос или дрель, находится схема управления нагрузкой с помощью симмистора. В ремонте подобной бытовой техники очень важно знать, исправен ли симмистор или нет.

Многие задают простой вопрос, как проверить симистор мультиметром, наивно думая, что такой способ самый верный и точный. Для проверки на исправность симмистора можно использовать простенькую схему, и тогда, со стопроцентной уверенностью можно оставить или отбраковать проверяемую деталь.

Данную схему мы собрали на макетной плате и постараемся описать принцип проверки симмистора.

Испытуемый симмистор — BTA16.

В исходном состоянии симмистор будет закрыт даже при подключенном источнике питания. Когда управляющий вывод на долю секунды замыкается с плюсовым выводом питания, то светодиод загорится, и будет гореть до тех пор, пока будет напряжение на источнике питания или пока мы опять не замкнем управляющий вывод на положительный полюс питания.

Схема простая и точная, она сразу даст возможность не только проверить симмистор, но и поможет понять новичкам принцип его работы.1

Вложения:

Как проверить термистор

Терморезисторы делятся на два вида: позисторы и термисторы. Все они изменяют свое сопротивление в зависимости от их температуры. У позисторов сопротивление увеличивается в зависимости от температуры, а у термисторов, наоборот – уменьшается. Терморезисторы находят свое применение во многих узлах различной техники и аппаратуры, начиная от датчиков температуры, заканчивая ограничителями пусковых токов в энергосберегающих лампах, блоках питания или двигателях.

Как проверить термистор мультиметром?

Если есть подозрение, что термистор неисправен, а его визуальный осмотр не выявил различных почернений, сколов и т.п., тогда можно приступить к проверке термистора мультиметром.

Для проверки используем NTC термистор 10S050M, 5 Ом, 4 А, со старого блока питания компьютера.

Перед началом проверки, мультиметр переводим в режим измерения сопротивления.

Также необходимо выбрать диапазон измерений в зависимости от особенностей проверяемого термистора.

При комнатной температуре термистор покажет сопротивление указанное производителем, в данном случае оно составляет 5,1 Ом.

Следующим шагом станет нагревания термистора и отслеживание изменения его сопротивления.

Для нагрева используется старый советский паяльник на 90Вт, который нагревается очень медленно и даст возможность визуально отследить изменения сопротивления термистора (изменения сопротивления составляют от 4,2 Ом до 2,7 Ом).

В нашем случае подопытный термистор работает вполне исправно, его сопротивление уменьшается одновременно с нагревом паяльника.

При монтаже на платах необходимо учитывать особенность термисторов — они нагреваются, и их необходимо размещать подальше от термочувствительных радиодеталей.

Вложения:

Как проверить полевой транзистор

В блоках питания или источниках бесперебойного напряжения полевые транзисторы часто выходят из строя. Проверка полевого транзистора важный, а в некоторых случаях один из первых шагов при ремонте подобной техники.

Как проверить полевой транзистор мультиметром?

Для простой проверки полевого транзистора необходимо производить действия согласно схеме.

Проверяемый полевик — IRFZ44N.

Черный щуп (-) подключаем на сток (D), а красный подключаем на исток (S) – на экране будет значение перехода встроенного встречного диода. Это значение необходимо запомнить.

Убираем красный щуп от истока и касаемся им затвора (G) – так мы частично открываем полевик.

Возвращаем красный щуп обратно на исток (S). Видим, что значение перехода поменялось, стало немного меньше — это полевой транзистор частично открылся

Переносим черный щуп со стока (D) на затвор (G) — закрываем полевой транзистор.

Возвращаем черный щуп обратно и наблюдаем, что показания перехода возвратилось к исходному — полевик полностью закрылся.

Затвор рабочего полевика должен иметь сопротивление равное бесконечности.

Готово, полевик исправен.

Схема предназначена для n—канального полевика, p— канальный проверяется аналогично, только необходимо изменить полярность щупов.

Для проверки полевого транзистора, также можно использовать небольшие схемы, к которым подключается полевик. Такой метод даст быструю и точную диагностику. Но если нет необходимости в частых проверках полевика или лень возиться со схемой, то описанная методика проверки полевого транзистора мультиметром будет отличным решением поставленной задачи.

Вложения:

Как проверить тиристор

Существует множество приборов и схем, в которых применяются тиристоры. Собирая обычный регулятор накала лампочки или схему зарядного устройства необходимо быть уверенным в том, что тиристор исправен. Сегодня мы расскажем о том, как проверить тиристор самым быстрым и простым способом.

Наглядная проверка тиристора будет производиться с самым ходовым отечественным тиристором КУ202Н. Такой метод подойдет для большинства тиристоров. Для самой простой проверки тиристора необходимо использовать схему, очень подобную той, которую использовали для проверки симистора.

Для проверки тиристора нужен источник постоянного напряжения (блок питания на 12В) и лампочка способная гореть от этого блока.

Плюс от блока питания подаем на анод тиристора, а минус через лампочку подключаем к катоду. При таком подключении лампочка не должна гореть (тиристор закрыт), если лампочка загорится сразу – тиристор пробит.

Дальше кратковременно замыкаем перемычкой анод и управляющий электрод, после этого исправный тиристор должен открыться – лампочка засветиться.

Свечение лампочки не должно прекращаться после того, как убралась перемычка. Тиристор будет в открытом состоянии до тех пор, пока не поменяется полярность источника питания или пока ток в цепи не станет меньше тока удержания тиристора.

Как проверить тиристор мультиметром?

Иногда для проверки тиристора хочется использовать только то, что есть под рукой: мультиметр или тестер.
Проверяя тиристор с помощью мультиметра необходимо использовать следующую схему, представленную на рисунке tiristor_06-schema_02.jpg.

Важно помнить, что не каждый мультиметр или тестер способен открыть тиристор.

Вложения:

Как проверить термопредохранитель

Предназначение термопредохранителя – защита электрической цепи от перегревания или замыкания. Очень часто термопредохранитель можно встретить в различных бытовых приборах таких, как: термофены, сушилки для фруктов, электроплиты, мультиварки и т.д. При самостоятельном ремонте подобной техники очень важно знать, как проверить термопредохранитель мультиметром или тестером. В случае отказа штатного термореле плитки или поломки двигателя обогревателя (фена), плавкий элемент расплавится и обесточит ТЭН.
Включение термопредохранителя производится последовательно с нагревательным элементом прибора и размещается он как можно ближе к ТЭНу. Температура срабатывания плавкого элемента внутри термопредохранителя зачастую указывается на его корпусе, а номинал термопредохранителя выбирают немного выше рабочей температуры самого прибора.

Как проверить термопредохранитель мультиметром или тестером?

Для проверки термопредохранителя нужен мультиметр или простой стрелочный тестер.

Достаточно перевести прибор в режим прозвонки цепи и проверить ее целостность. Если стрелка прибора не сдвинется с места или на дисплее горит 1, значит у нас обрыв цепи – такой термопредохранитель неисправен.

Как проверить термопредохранитель без тестера?

Без тестера термопредохранитель можно проверить, подключив последовательно с ним контрольную лампочку. Но в таком случае необходимо знать напряжение на которое рассчитан термопредохранитель и ток, который он способен через себя пропустить не расплавившись.

При замене термопредохранителя лучше подбирать термопредохранитель с аналогичной температурой срабатывания или с температурой немного выше. Не стоит заменять термопредохранитель перемычкой, это можно сделать лишь для проверки работоспособности прибора.

Вложения:

Как проверить резистор

Несмотря на разнообразие резисторов, у обычных элементов этого класса линейная ВАХ, что существенно упрощает проверку, сводя ее к трем этапам:
1. внешний осмотр;
2. радиодеталь тестируется на обрыв;
3. осуществляется проверка соответствия номиналу.

Если с первым и вторым пунктом все понятно, то с последним есть нюансы, а именно, необходимо узнать номинальное сопротивление.

Определить номинал можно по маркировке резистора.

Нарушение штатного режима работы вызывает перегрев детали, поэтому, в большинстве случаев, определить проблемный элемент можно по внешнему виду. Это может быть как изменение цвета корпуса, так и его полное или частичное разрушение. В таких случаях необходимо заменить сгоревший элемент.

Проверка на обрыв

1. Включаем прибор в режим «прозвонки». На рисунке 5 отмечена эта позиция как «1».
2. Подключаем щупы к гнездам «2» и «3» (см. рис.5). Несмотря на то, что в нашем тестировании полярность не имеет значения, лучше сразу приучить себя подключать щупы правильно. Поэтому к гнезду «2» подключаем красный провод (+), а к «3» — черный (-).
3. Касаемся щупами выводов проблемного элемента на плате. Если деталь «не звонится» (мультиметр покажет цифру 1, то есть бесконечно большое сопротивление), можно констатировать, что проверка показала обрыв в резисторе.

Обратим внимание, что данное тестирование можно проводить, не выпаивая элемент с платы, но это не гарантирует 100% результат, поскольку тестер может показать связь через другие компоненты схемы.

Проверка на номинала.

Если деталь выпаяна, то этот этап позволит гарантированно показать ее работоспособность. Для тестирования нам необходимо знать номинал.

1. Подключаем щупы, так как на предыдущем тестировании.
2. Включаем измерение сопротивления (диапазон приведен на рисунке 6) в режиме большем, чем номинал, но максимально близким к нему. Например, нам необходимо проверить резистор 47 кОм, следовательно, нужно выбрать диапазон «200К».
3. Касаемся щупами выводов, снимаем показания и сравниваем их с номиналом. Если они не совпадают, а это можно гарантировать с вероятностью близкой к 100%, не стоит отчаиваться. Следует учитывать как погрешность прибора, так и допуск самого элемента.

Что такое допуск, и насколько он важен?

Эта величина показывает возможное отклонение у данной серии от указанного номинала. В правильно рассчитанной схеме должен учитываться этот показатель, либо после сборки производится соответствующая наладка.

4. Принимаем решение, сравнив показания мультметра с номиналом, если расхождение выходит за пределы погрешности, деталь однозначно нуждается в замене.

Как тестировать переменный резистор?

1. Проводим измерение между ножками «1» и «3» (см. рис. 7) и сравниваем полученное значение с номиналом.
2. Подключаем щупы к выводам «2» и любому из оставшихся («1» или «3», значения не имеет).
3. Вращаем подстроечную ручку и наблюдаем за показаниями прибора, они должны меняться в диапазоне от 0 до величины, полученной в пункте 1.

Как проверить резистор мультиметром, не выпаивая на плате?

Такой вариант тестирования допустим только с низкоомными элементами. При номинале более 80-100 Ом, с большой вероятностью, на измерение будут влиять другие компоненты. Окончательно можно дать ответ, только внимательно изучив принципиальную схему.

Вложения:

Как проверить позистор

Неприхотливость и относительная физическая устойчивость позисторов позволяет их использовать в роли датчика для автостабилизирующихся систем, а также реализовать защиту от перегрузки. Принцип работы этих элементов заключается в том, что их сопротивление увеличивается при нагреве (в отличие от термисторов, где оно уменьшается). Соответственно, при проверке тестером или
мультиметром позисторов на работоспособность, необходимо учитывать температурную корреляцию.

Широкая сфера применения РТС-термисторов подразумевает их обширный ассортимент, поскольку характеристики этих устройств должны соответствовать различным условиям эксплуатации. В связи с этим для тестирования очень важно определить серию элемента, в этом нам поможет маркировка.

Для примера возьмем радиокомпонент С831. Посмотрим, что можно определить по надписям на корпусе детали.

Учитывая надпись «РТС», можно констатировать, что данный элемент является позистором «С831». Сформировав запрос в поисковике (например, «РТС С831 datasheet»), находим спецификацию (даташит). Из нее мы узнаем наименование (B59831-C135-A70) и серию (B598*1) детали, а также основные параметры (см. рис. 3) и назначение. Последнее указывает, что элемент может играть роль самовосстанавливающегося предохранителя, защищающего схему от КЗ (short-circuit protection) и перегрузки (overcurrent).

Кратко рассмотрим данные, приведенные в таблице на рисунке 3 (pozistor_03.jpg).

Краткое описание:
1. значение, характеризующее максимальный уровень рабочего напряжения при нагреве устройства до 60°С, в данном случае он соответствует 265 В. Учитывая, что нет определения DC/AC, можно констатировать, что элемент работает как с переменным, так и постоянным напряжением.
2. Номинальный уровень, то есть напряжение в штатном режиме работы – 230 вольт.
3. Расчетное число гарантированных производителем циклов срабатывания элемента, в нашем случае их 100.
4. Значение, описывающее величину опорной температуры, после достижения которой происходит существенное увеличение уровня сопротивления. Для наглядности приведем график (см. рис. 4) температурной корреляции.
5. Соответствие номинальному значению R (то есть допуск), указывается в процентном соотношении, а именно 25%.
6. Диапазон рабочей температуры для минимального (от -40°С до 125°С) и максимального (0-60°С) напряжения.

Интересное на схемафоруме:
Какой Power Bank можно брать в самолет

Это были основные параметры серии, теперь рассмотрим спецификацию для С831 (см. рис. pozistor_04.jpg).

Спецификация модельного ряда серии B598*1

Краткая расшифровка:
1. Величина тока для штатного режима работы, для нашей детали это почти половина ампера, а именно 470 мА (0,47 А).
2. Этот параметр указывает ток, при котором величина сопротивления начинает существенно меняться в большую сторону. То есть, когда через С831 протекает ток с силой 970 мА, срабатывает «защита» устройства. Следует заметить, что этот параметр связан с точкой температурного перехода, поскольку проходящий ток приводит к разогреву элемента.
3. Максимально допустимая величина тока для перехода в «защитный» режим, для С831 это 7 А. Обратите внимание, что в графе указано максимальное напряжение, следовательно, можно рассчитать допустимую величину мощности рассеивания, превышение которой с большой вероятностью приведет к разрушению детали.
4. Время срабатывания, для С831 при напряжении 265 вольт и токе 7 ампер оно составит менее 8 секунд.
5. Величина остаточного тока, необходимого для поддерживания защитного режима рассматриваемой радиодетали, она 0,02 А. Из этого следует, что на удержание сработавшего состояния требуется мощность 5,3 Вт (I x V ).
6. Сопротивление устройства при температуре 25°С (3,7 Ом для нашей модели). Отметим, с измерения мультиметром этого параметра начинается проверка позистора на исправность.
7. Величина минимального сопротивления, у модели С831 это 2,6 Ом. Для полноты картины, еще раз приведем график температурной зависимости, где будут отмечены номинальное и минимальное значение R.
Обратите внимание, что на начальном этапе нагрева радиодетали ее параметр R незначительно уменьшается, то есть в определенном диапазоне температур у нашей модели начинают проявляться NTS свойства. Эта особенность, в той или иной мере, характерна для всех позисторов.
8. Полное наименование модели (у нас B59831-C135-A70), данная информация может быть полезной для поиска аналогов.

Теперь, зная спецификацию, можно переходить к проверке на работоспособность.

Определение исправности по внешнему виду

В отличие от других радиодеталей (например, таких как транзистор или диод), вышедший из строя РТС-резистор часто можно определить по внешнему виду. Это связано с тем, что вследствие превышения допустимой мощности рассеивания нарушается целостность корпуса.

Обнаружив на плате позистор с таким отклонением от нормы, можно смело выпаивать его и начинать поиск замены, не утруждая себя процедурой проверки мультиметром.

Если внешний осмотр не дал результата, приступаем к тестированию.

Для процесса тестирования, помимо измерительного прибора, потребуется паяльник. Подготовив все необходимое, начинаем действовать в следующем порядке:

1. Подключаем тестируемую деталь к мультиметру. Желательно, чтобы прибор был оснащен «крокодилами», в противном случае припаиваем к выводам элемента проволоку и накручиваем ее на разные иглы щупов.
2. Включаем режим измерения наименьшего сопротивления (200 Ом). Прибор покажет номинальную величину R, характерную для тестируемой модели (как правило, менее одного-двух десятков Ом). Если показание отличается от спецификации (с учетом погрешности), можно констатировать неисправность радиокомпонента.
3. Аккуратно нагреваем корпус тестируемой детали при помощи паяльника, величина R начнет резко увеличиваться. Если она осталась неизменной, элемент необходимо менять.
4. Отключаем мультиметр от тестируемой детали, даем ей остыть, после чего повторяем действия, описанные в пунктах 1 и 2. Если сопротивление вернулось к номинальному значению, то радиокомпонент с большой долей вероятности можно признать исправным.

Вложения:

Как проверить транзистор

Как проверить различные типы транзисторов мультиметром?

Полупроводниковые элементы используются практически во всех электронных схемах. Те, кто называют их наиболее важными и самыми распространенными радиодеталями абсолютно правы. Но любые компоненты не вечны, перегрузка по напряжению и току, нарушение температурного режима и другие факторы могут вывести их из строя. Расскажем (не перегружая теорией), как проверить работоспособность различных типов транзисторов (npn, pnp, полярных и составных) пользуясь тестером или мультиметром.

Прежде, чем проверить мультиметром любой элемент на исправность, будь то транзистор, тиристор, конденсатор или резистор, необходимо определить его тип и характеристики. Сделать это можно по маркировке. Узнав ее, не составит труда найти техническое описание (даташит) на тематических сайтах. С его помощью мы узнаем тип, цоколевку, основные характеристики и другую полезную информацию, включая аналоги для замены.

Например, в телевизоре перестала работать развертка. Подозрение вызывает строчный транзистор с маркировкой D2499 (кстати, довольно распространенный случай). Найдя в интернете спецификацию (ее фрагмент показан на рисунке 2), мы получаем всю необходимую для тестирования информацию.

Фрагмент спецификации на 2SD2499 (transistor_0.jpg).

Определив тип и цоколевку, выпаиваем деталь и приступаем к проверке. Ниже приведены инструкции, с помощью которых мы будем тестировать наиболее распространенные полупроводниковые элементы.

Проверка биполярного транзистора мультиметром

Это наиболее распространенный компонент, например серии КТ315, КТ361 и т.д.

С тестированием данного типа проблем не возникнет, достаточно представить pn переход в как диод. Тогда структуры pnp и npn будут иметь вид двух встречно или обратно подключенных диодов со средней точкой (см. рис.transistor_02.jpg).

«Диодные аналоги» переходов pnp и npn (transistor_02.jpg).

Присоединяем к мультиметру щупы, черный к «СОМ» (это будет минус), а красный к гнезду «V?mA» (плюс). Включаем тестирующее устройство, переводим его в режим прозвонки или измерения сопротивления (достаточно установить предел 2кОм), и приступаем к тестированию. Начнем с pnp проводимости:

Присоединяем черный щуп к выводу «Б», а красный (от гнезда «V?mA») к ножке «Э». Смотрим на показания мультиметра, он должен отобразить величину сопротивления перехода. Нормальным считается диапазон от 0,6 кОм до 1,3 кОм.

Таким же образом проводим измерения между выводами «Б» и «К». Показания должны быть в том же диапазоне.
Если при первом и/или втором измерении мультиметр отобразит минимальное сопротивление, значит в переходе(ах) пробой и деталь требует замены.

Меняем полярность (красный и черный щуп) местами и повторяем измерения. Если электронный компонент исправный, отобразится сопротивление, стремящееся к минимальному значению. При показании «1» (измеряемая величина превышает возможности устройства), можно констатировать внутренний обрыв в цепи, следовательно, потребуется замена радиоэлемента.
Тестирование устройства обратной проводимости производится по такому же принципу, с небольшим изменением:

Красный щуп подключаем к ножке «Б» и проверяем сопротивление черным щупом (прикасаясь к выводам «К» и «Э», поочередно), оно должно быть минимальным.
Меняем полярность и повторяем измерения, мультиметр покажет сопротивление в диапазоне 0,6-1,3 кОм.
Отклонения от этих значений говорят о неисправности компонента.

Проверка работоспособности полевого транзистора

Этот тип полупроводниковых элементов также называют mosfet и моп компонентами. На рисунке 4 показано графическое обозначение n- и p-канальных полевиков в принципиальных схемах.

Полевые транзисторы (N- и P-канальный, transistor_03_mop.jpg).

Для проверки этих устройств подключаем щупы к мультиметру, таким же образом, как и при тестировании биполярных полупроводников, и устанавливаем тип тестирования «прозвонка». Далее действуем по следующему алгоритму (для n-канального элемента):

Касаемся черным проводом ножки «с», а красным – вывода «и». Отобразится сопротивление на встроенном диоде, запоминаем показание.

Теперь необходимо «открыть» переход (получится только частично), для этого щуп с красным проводом соединяем с выводом «з».

Повторяем измерение, проведенное в п. 1, показание изменится в меньшую сторону, что говорит о частичном «открытии» полевика.

Теперь необходимо «закрыть» компонент, с этой целью соединяем отрицательный щуп (провод черного цвета) с ножкой «з».

Повторяем действия п. 1, отобразится исходное значение, следовательно, произошло «закрытие», что говорит об исправности компонента.

Для тестирования элементов p-канального типа последовательность действий остается той же, за исключением полярности щупов, ее нужно поменять на противоположную.

Заметим, что биполярные элементы, у которых изолированный затвор (IGBT), тестируются также, как описано выше. На рисунке transistor_04_igbt.jpg показан компонент SC12850, относящийся к этому классу.

Для тестирования необходимо выполнить те же действия, что и для полевого полупроводникового элемента, с учетом, что сток и исток последнего будут соответствовать коллектору и эмиттеру.

В некоторых случаях потенциала на щупах мультиметра может быть недостаточно (например, чтобы «открыть» мощный силовой транзистор), в такой ситуации понадобится дополнительное питание (хватит 12 вольт). Подключать его нужно через сопротивление 1500-2000 Ом.

Проверка составного транзистора

Такой полупроводниковый элемент еще называют «транзистор Дарлингтона», по сути это два элемента, собранные в одном корпусе. Для примера, на рисунке 6 показан фрагмент спецификации к КТ827А, где отображена эквивалентная схема его устройства.

Эквивалентная схема транзистора КТ827А (transistor_05.jpg).

Проверить такой элемент мультиметром не получится, потребуется сделать простейший пробник, его схема показана на рисунке 7.

Схема для проверки составного транзистора (transistor_06.jpg).

Обозначение:

Т – тестируемый элемент, в нашем случае КТ827А.
Л – лампочка.
R – резистор, его номинал рассчитываем по формуле h21Э*U/I, то есть, умножаем величину входящего напряжения на минимальное значение коэффициента усиления (для КТ827A — 750), полученный результат делим на ток нагрузки. Допустим, мы используем лампочку от габаритных огней автомобиля мощностью 5 Вт, ток нагрузки составит 0,42 А (5/12). Следовательно, нам понадобится резистор на 21 кОм (750*12/0,42).

Тестирование производится следующим образом:

Подключаем к базе плюс от источника, в результате должна засветиться лампочка.
Подаем минус – лампочка гаснет.
Такой результат говорит о работоспособности радиодетали, при других результатах потребуется замена.

Как проверить однопереходной транзистор

В качестве примера приведем КТ117, фрагмент из его спецификации показан на рисунке transistor_07.jpg.

Проверка элемента осуществляется следующим образом:

Переводим мультиметр в режим прозвонки и проверяем сопротивление между ножками «Б1» и «Б2», если оно незначительное, можно констатировать пробой.

Как проверить транзистор мультиметром, не выпаивая их схемы?

Этот вопрос довольно актуальный, особенно в тех случаях, если необходимо тестировать целостность smd элементов. К сожалению, только биполярные транзисторы можно проверить мультиметром не выпаивая из платы. Но даже в этом случае нельзя быть уверенным в результате, поскольку не редки случаи, когда p-n переход элемента зашунтирован низкоомным сопротивлением.

Вложения:

Как проверить трансформатор

Проверка обмоток трансформаторов с легкостью может вызвать панику у новичка, имея кучу выводов разных обмоток тяжело сообразить с чего же начать такую проверку.

Для начала необходимо разобраться с более простым примером и понять сам принцип, как проверить трансформатор мультиметром. Сегодня мы расскажем, как проверить понижающий трансформатор 220 В на 12 В с помощью мультиметра, в два шага.

Наш простенький трансформатор от зарядного устройства имеет всего четыре вывода, т.е. два провода с вторичной обмотки и два с первичной. Весь процесс проверки трансформатора мультиметром заключается в проверке целостности обмоток. Для начала необходимо мультиметр перевести в режим проверки диодов или же измерения сопротивления. Дальше проверяется одна из обмоток, полярность подключения щупов роли не играет.

Затем подключается к мультиметру вторая обмотка.

А если вдруг возникает вопрос, как определить обмотки трансформатора? На него можно ответить тем, что сопротивление первичной обмотки у понижающего трансформатора всегда будет больше.
Как проверить трансформатор мультиметром

Обмотка, которая имеет обрыв, прозваниваться не будет вообще. Если есть необходимость проверки трансформаторов, у которых есть несколько выводов первичной обмотки и несколько вторичных обмоток, то каждая обмотка такого трансформатора проверяется отдельно.

Прибор для проверки межвиткового замыкания

При ремонте двигателей и генераторов, это устройство может стать очень полезным. Схема прибора и его работа очень проста и доступна для сборки даже новичкам. Благодаря этому тестеру станет возможным проверка любых трансформаторов, генераторов, дросселей и разнообразных катушек, индуктивностью от 200 мкГн до 2 Гн. Аппарат позволит определить не только целостность проверяемой обмотки, но также поможет выявить межвитковое замыкание, способен проверить p-n переходы у кремниевых транзисторов или диодов.

Схема прибора описывалась в журнале «Радио» №7 за 1990 год, но до сих пор не потеряла свою актуальность благодаря своей простоте и надежности. С таким пробором проверка межвиткового замыкания осуществляется за считанные секунды.

Собранный тестер немного отличается от этой схемы. О внесенных изменениях в схему читаем в конце.

Основу тестера составляет измерительный генератор. Он собран на транзисторах VT1, VT2. Частота этого генератора не постоянная и зависит от колебательного контура, который образуется конденсатором С1, а также подключаемой катушкой, она подсоединяется к ХР1 и ХР2. Резистором R1 устанавливается нужная глубина положительной обратной связи, для обеспечения надежной работы измерительного генератора. VT3, включен в диодном режиме, он создает нужный сдвиг напряжения между эмиттером VT2 и базой VT4.

VT4, VT5 представляют собой генератор импульсов, вместе с усилителем мощности на транзисторе VT6 способен обеспечить горение светодиода в трех различных режимах: не горит, мигает с постоянной частотой, а также простое свечение. Выбор режима работы генератора импульсов определяется напряжением смещения на базе транзистора VT4.

При сборке устройства целесообразно проверять правильность схемы постепенно. Проверку работоспособности генератора импульсов можно осуществить подключением переменного резистора на 1 кОм, как показано на схеме. Вращая движок этого резистора можно убедиться, что генератор импульсов работает правильно во всех режимах. При установки сопротивления 200-300 Ом, важно убедиться, что происходит мигание светодиода.

Работа тестера осуществляется следующим образом. Если выводы тестера замкнуты, измерительный генератор не возбуждается вовсе, VT2 будет открытым. Напряжения на эмиттере VT2, а значит, на базе транзистора VT4 будет недостаточно, что бы заработал генератора импульсов. VT5, VT6 в таком случае будут открыты, а диод будет гореть постоянно, что сигнализирует о целостности цепи.

В случае подключения к измерительным выводам устройства исправной катушки, припустим, осуществляется проверка трансформатора на межвитковое замыкание, а также произведя подстройку с помощью R1, измерительный генератор начнет возбуждаться. На эмиттере VT2 напряжение будет увеличиваться, это все приведет к увеличению напряжения смещения на базе VT4, а также пуска генератора импульсов. Диод должен мигать.

Если окажется, что обмотка, которую проверяют, имеет короткозамкнутые витки, тогда измерительный генератор не будет возбуждаться, а прибор заработает также, как и в случе замкнутых выводов (контрольный диод засветится).

Когда измерительные выводы будут отключены или появится обрыв, тогда VT2 будет закрыт. Напряжение на его эмиттере, а это значит, что и на базе VT4 возрастает. Он открывается до насыщения, а колебания генератора импульсов будут сорваны. VT5, VT6 закроются, а контрольный диод не засветиться вовсе.

Еще одной особенностью этого тестера есть возможность проверки p-n переходов. Подключая к аппарату кремниевый диод или транзистор (анод к ХР1, катод к ХР2), контрольный светодиод должен мигать. При пробое светодиод просто горит, а в случае обрыва не светится.

Вместо VT1— VT3 можно ставить КТ358В или КТ312В. КТ361Б легко заменяются на КТ502, КТ209. При использовании светодиода необходимо последовательно с ним включать сопротивление около 30-60 Ом.; питания прибора осуществляется от источника — 3В. При использовании кроны целесообразно применить стабилизатор на 3,3В.

Иногда в крайнем правом положении переменного резистора, а также разомкнутых щупах тестера диод может засветиться. Необходимо изменить сопротивление резистора R3 (немного его увеличить), добиться, чтобы диод потух.

Когда проверяются катушки небольшой индуктивности, интенсивность перестройки переменного резистора, возможно, будет чрезмерной. Можно с легкостью выйти из этого положения включением последовательно с резистором R1 дополнительного переменного резистора с небольшим максимальным сопротивлением, например 1 кОм.

Для сборки тестера применялись следующие компоненты и внеслись небольшие изменения: транзисторы КТ315 и КТ209. Переменные резисторы на 47кОм (для грубой настройки) и 1кОм (для точной настройки). Питание устройства осуществляется с помощью батареи КРОНА, и стабилизатора AMS1117 на 3,3В. Дополнительно установлен светодиод зеленого цвета который сигнализирует о включении прибора, а красный – контрольный светодиод. Последовательно с обоими светодиодами включен резистор на 30Ом.

Проверка работы и целостности цепи (trans_04-Проверка работы и целостности цепи.jpg).
Проверка обмотки, светодиод мигает (trans_05-Проверка обмотки. (светодиод мигает).jpg).
Имитация короткозамкнутых витков. Светодиод горит при любом положении переменного резистора (trans_06-Имитация короткозамкнутых витков.jpg).

Вложения:

Как проверить ТЭН

ТЭН – один из ключевых элементов большинства нагревательных приборов. При его выходе из строя пользоваться техникой становится невозможно, а иногда и опасно.

Проверить тэн на водонагревателе или стиральной машине можно несколькими способами. Самые простые – это прозвонка контрольной лампочкой и проверка омметром.

Как проверить ТЭН на водонагревателе или бойлере?

Самый первый шаг – это проверка целостности нити тэна омметром. Зачастую тэны имеют сопротивление в несколько десятков Ом. Для этого необходимо добраться до тэна и измерить сопротивление на его выводах.

Для проверки целостности не всегда обязательно снимать тэн полностью, достаточно просто подключить прибор к контактам.

Если спираль исправна, то следующий этап проверки – проверка на пробой. В случае если тэн пробивает на корпус, то им пользоваться уже опасно.

Если нет под рукой цифрового или стрелочного мультиметра, тэн можно проверить с помощью контрольной лампочки, последовательно подсоединив ее к тэну.

Как проверить ТЭН чайника?

Проверка чайника проводиться по аналогии с другими тэнами. Достаточно просто измерить его сопротивление. Если тэн чайника неисправен, скорей всего ремонту такой чайник не подлежит.

Как проверить ТЭН тестером?

Когда под рукой нет цифрового мультиметра, можно использовать стрелочный тестер. Принцип проверки аналогичный. По отклонению стрелки достаточно просто определить исправность спирали. Для наглядности проверяем тестером тэн сушки. Увы, тэн данной сушки, как видим нерабочий.

Вложения:

 

Оставьте комментарий